Корректирующая способность кода
Полезной иллюстрацией приведенного доказательства может служить диаграмма, представленная на рис. 1. На ней изображены сферы Хэмминга радиуса c центром , представляющие собой множество точек (векторов), расположенных отна расстоянии Хэмминга или ближе. Если все сферы Хэмминга радиуса , окружающие кодовые вектора , не перекрываются, декодер воспримет любой вектор внутри i-ой сферы, как i-ый кодовый вектор . Это означает, что любая ошибка кратности и менее в кодовом слове будет исправлена. Вместе с тем, при условии исправления любых ошибок кратности избежать перекрытия сфер можно только в том случае, если минимальное расстояние Хэмминга между кодовыми векторами не меньше, чем .
Из представленной диаграммы легко увидеть, что обнаружение ошибок кратности в принятых векторах возможно тогда, когда выполняется условие
.
Из рассмотренного видно, что основными параметрами блокового кода являются: кодовое расстояние , его объем и длина . Часто при описании характеристик кода вместо объема используют либо число информационных символов в кодовом слове , либо скорость кода . Именно с этими параметрами связаны два основных варианта задач, рассматриваемых теорией кодирования. Первая из них связана с максимизацией при заданных значениях ( или ) и для достижения хорошей корректирующей способности кода. Дуальной задачей является максимизация ( или) при минимуме и длины .
Арифметика и структура конечных полей Галуа. Многочлены над полями Галуа